Visible light exposure of galaxy cluster Abell 2744 from NASA/ESA Hubble Space Telescope and ESO's Very Large Telescope, X-ray data from NASA's Chandra X-ray Observatory & math reconstruction of dark matter location. D. Coe & J. Merten/ESO/NASA/ESA/CXC

Many body interactions from Restricted Boltzmann Machines

Ermal Rrapaj (Hosted by Pastore/Piarulli), University of Minnesota

Restricted Boltzmann Machines (RBM) are simple statistical models defined on a bipartite graph which have been successfully used in studying more complicated many-body systems, both classical and quantum. In this work, we exploit the representation power of RBMs to provide an exact decomposition of many-body contact interactions into one-body operators coupled to discrete auxiliary fields. This construction generalizes the well known Hirsch's transform used for the Hubbard model to more complicated theories such as Pionless EFT in nuclear physics, which we analyze in detail. We also discuss possible applications of our mapping for quantum annealing applications and conclude with some implications for RBM parameter optimization through machine learning.

Zoom link available upon request at physics@wustl.edu.
Post-docs and students' Q&A with the speaker starts at 2:15 pm.  Contact Garrett King for the Q&A Zoom link.