Condensed Matter/Materials & Biological Physics Seminar with Kostya Trachenko on the Liquid State of Matter

Kostya Trachenko (Hosted by Nussinov) from Queen Mary University of London will be presenting the seminar "New Understanding of the Liquid State of Matter, Viscosity and Its Lower Bounds"

Understanding most basic thermodynamic properties of the liquid state such as energy and heat capacity turned out to be a long-standing problem in physics [1]. Landau & Lifshitz textbook states that no general formulas can be derived for liquid thermodynamic functions because the interactions are both strong and system-specific. Phrased differently, liquids have no small parameter. Recent experimental and theoretical results open a new way to understand liquid thermodynamics on the basis of collective modes (phonons) as is done in the solid state theory. There are important differences between phonons in solids and  liquids, and we have recently started to understand and quantify this difference. I will review collective modes in liquids including high-frequency solid-like transverse modes and will discuss how a gap in the reciprocal space emerges and develops in their spectrum. This reduces the number of phonons with temperature, consistent with the experimental decrease of constant-volume specific heat with temperature [1].  I will discuss the implication of the above theory for fundamental understanding of liquids. I will also mention how this picture can be extended above the critical point where the Frenkel line [2] on the phase diagram separates liquid-like and gas-like states of supercritical dynamics. I will subsequently describe how this leads to the theory of minimal quantum viscosity in terms of fundamental physical constants and addresses the question raised by Purcell and Weisskopf of why liquid viscosity never falls below a certain value [4]. Finally, I will note that the minimum of thermal diffusivity can also be written as the same combination of fundamental constants, in agreement with the wide set of experimental data [5].

  1. K. Trachenko and V. Brazhkin, Collective modes and thermodynamics of the liquid state, Reports on Progress in Physics 79, 016502 (2016)
  2. C Cockrell, V Brazhkin and K Trachenko, Physics Reports 941, 1 (2021)
  3. K. Trachenko and V Brazhkin, Minimal quantum viscosity from fundamental physical constants, Sci. Adv. 6, eaba3747 (2020)
  4. K. Trachenko and V Brazhkin, Physics Today 74(12), 66 (2021)
  5. Trachenko et al, PRB 103, 014311 (2021)