Quantum Theory of Many-Particle Systems, Phys. 540

- Anomalous propagators for fermions
- BCS
- Baym-Kadanoff strategy: propagator ↔ excited states

- Other questions about last class and assignments?
- Comments?

Finite temperature formalism

- Diagram technique can also be developed for systems at finite T
- In fact, same diagrams appear but there are some significant differences including e.g. Matsubara sums
- Focus on fermions

- Introduce finite T propagator (logical choice)
 \[G_T(\alpha, \beta; t, t') = -\frac{i}{\hbar} \left\langle T [a_{\alpha\Omega}(t)a_{\beta\Omega}^\dagger(t')] \right\rangle = -\frac{i}{\hbar} \text{Tr} \left(\hat{\rho}_G T [a_{\alpha\Omega}(t)a_{\beta\Omega}^\dagger(t')] \right) \]

 - as before \(\hat{\rho}_G = \frac{e^{-\beta(H-\mu\hat{N})}}{Z_G} \)

 - Employ grand-canonical description so time evolution (as for bosons) governed by \(\hat{\Omega} = \hat{H} - \mu\hat{N} \)

 - Particle number conserved on average --> chemical potential
Modified Heisenberg picture

- Choice (other authors continue with standard version)

 \[a_{\alpha\Omega}(t) = \exp\left\{ \frac{i}{\hbar} \hat{\Omega} t \right\} a_{\alpha} \exp\left\{ -\frac{i}{\hbar} \hat{\Omega} t \right\} \]

- Real-time propagator not ready for perturbation expansion
- Remember: used time-dependent Schrödinger equation before
- Here: other evolution equation for the operator \(\exp(-\hat{\Omega} \tau / \hbar) \)
- relating it to \(\exp(-\beta \hat{\Omega}) \)
- Introduce \(a_{\alpha\Omega}(\tau) = \exp\left\{ \frac{\hat{\Omega} \tau}{\hbar} \right\} a_{\alpha} \exp\left\{ -\frac{\hat{\Omega} \tau}{\hbar} \right\} \tau \) real
- and \(a_{\beta\Omega}^\dagger(\tau) = \exp\left\{ \frac{\hat{\Omega} \tau}{\hbar} \right\} a_{\beta}^\dagger \exp\left\{ -\frac{\hat{\Omega} \tau}{\hbar} \right\} \)

- Not adjoints!
- \(\tau \Rightarrow \tau \) requires imaginary time-ordering operation \(T_{\tau} \)
- smallest to the right etc. keeping fermion sign

Temperature/imaginary time sp propagator

- Define (dropping \(\text{i} \) as in the literature)

 \[
 G_T(\alpha, \beta; \tau - \tau') = -\frac{1}{\hbar} \left\langle T_{\tau} [a_{\alpha\Omega}(\tau) a_{\beta\Omega}^\dagger(\tau')] \right\rangle
 = -\frac{1}{\hbar} \text{Tr} \left(\hat{\rho}_G T_{\tau} [a_{\alpha\Omega}(\tau) a_{\beta\Omega}^\dagger(\tau')] \right)
 \]

- Notation: only \(\tau - \tau' \) dependence
- Quasiperiodic \(\tau - \tau' \) dependence
- Put \(\tau' = 0 \) and write

 \[
 G_T(\alpha, \beta; \tau) = -\frac{1}{\hbar Z_G} \left\{ \theta(\tau) \text{Tr} \left(e^{-(\beta - \tau / \hbar)} \hat{\Omega} a_{\alpha} e^{-\tau \hat{\Omega} / \hbar} a_{\beta}^\dagger \right) \\
 - \theta(-\tau) \text{Tr} \left(e^{-(\beta + \tau / \hbar)} \hat{\Omega} a_{\beta}^\dagger e^{\tau \hat{\Omega} / \hbar} a_{\alpha} \right) \right\}
 \]

- with \(Z_G = \text{Tr} \left(e^{-\beta (\hat{H} - \mu \hat{N})} \right) \)

 \[
 = \sum_N \sum_n \langle \Psi^N_n | e^{-\beta (\hat{H} - \mu \hat{N})} | \Psi^N_n \rangle = \sum_N \sum_n e^{-\beta (\mu_n - \mu) N}
 \]

- and employing invariance of Trace \(\text{Tr} \left(\hat{A}\hat{B} \ldots \hat{X}\hat{Y} \right) = \text{Tr} \left(\hat{Y}\hat{A}\hat{B} \ldots \hat{X} \right) \)
Periodicity

- Weight factor in imaginary-time propagator in sum over states
 \[e^{-(\beta \pm \tau / \hbar)\hat{\Omega}} \]
- Spectrum of grand potential not bounded from above
- \(\rightarrow \) Temperature propagator only defined for \(-\beta \hbar \leq \tau \leq \beta \hbar \) ensuring convergence
- Compare propagator for \(-\beta \hbar < \tau < 0 \) with the one at \(\tau + \beta \hbar \)
 \[
 G_T(\alpha, \beta; \tau) = \frac{1}{\hbar Z_G} \text{Tr} \left(e^{-(\beta + \tau / \hbar)\hat{\Omega}} a_\beta^\dagger e^{\tau \hat{\Omega}/\hbar} a_\alpha \right)
 \]
 \[
 G_T(\alpha, \beta; \tau + \beta \hbar) = -\frac{1}{\hbar Z_G} \text{Tr} \left(e^{\tau \hat{\Omega}/\hbar} a_\alpha e^{-(\beta + \tau / \hbar)\hat{\Omega}} a_\beta^\dagger \right)
 \]
- Cyclic property of trace then shows the antiperiodicity
 \[
 G_T(\alpha, \beta; \tau) = -G_T(\alpha, \beta; \tau + \beta \hbar)
 \]

Expansion in discrete frequencies

- Propagator continuous function over \([-\beta \hbar, \beta \hbar]\)
- Boundary condition implies that function can be repeated with period \(2\beta \hbar\)
- Allows expansion as a discrete Fourier series
 \[
 G_T(\alpha, \beta; \tau) = \frac{1}{\hbar \beta} \sum_{n=-\infty}^{+\infty} e^{-iE_n \tau / \hbar} G_T(\alpha, \beta; E_n)
 \]
 \[
 E_n = \frac{(2n + 1)\pi}{\beta}
 \]
- Coefficients contain equivalent information
 \[
 G_T(\alpha, \beta; E_n) = \frac{1}{2} \int_{-\beta \hbar}^{\beta \hbar} d\tau \ e^{iE_n \tau / \hbar} G_T(\alpha, \beta; \tau) = \int_{0}^{\beta \hbar} d\tau \ e^{iE_n \tau / \hbar} G_T(\alpha, \beta; \tau)
 \]
- \(\rightarrow \) temperature propagator in imaginary energy domain
Noninteracting temperature propagator

• Helpful to consider noninteracting Fermi system with
 \(\hat{\Omega}_0 = \hat{H}_0 - \mu \hat{N} \)

• Notation
 \(Z_F^0 = \text{Tr} \left(e^{-\beta \hat{\Omega}_0} \right) \quad \text{and} \quad \rho_G^0 = \frac{e^{-\beta \hat{\Omega}_0}}{Z_F^0} \)

• Then
 \[G_T^{(0)}(\alpha, \beta; \tau - \tau') = -\frac{1}{\hbar} \langle T_{\tau}[a_{\alpha 0}(\tau) a_{\beta 0}^\dagger(\tau')] \rangle_0 \]
 \[= -\frac{1}{\hbar} \text{Tr} \left(\rho_G^0 T_{\tau}[a_{\alpha 0}(\tau) a_{\beta 0}^\dagger(\tau')] \right) \]

• Ensemble average over noninteracting systems

• Easy to show that
 \(\hbar \frac{\partial}{\partial \tau} a_{\alpha 0}(\tau) = [\hat{\Omega}_0, a_{\alpha 0}(\tau)] \)
 \[= \exp \left\{ \hat{\Omega}_0 \tau / \hbar \right\} \left[\hat{\Omega}_0, a_\alpha \right] \exp \left\{ -\hat{\Omega}_0 \tau / \hbar \right\} \]
 \[= - (\varepsilon_\alpha - \mu) a_{\alpha 0}(\tau) = -\varepsilon_\alpha a_{\alpha 0}(\tau) \]

• assuming sp eigenstates of noninteracting Hamiltonian \((\varepsilon_{\alpha \mu} = \varepsilon_\alpha - \mu)\)

• Solution
 \(a_{\alpha \Omega_0}(\tau) = e^{-\varepsilon_\alpha \mu \tau / \hbar} a_\alpha \)
 similarly
 \(a_{\alpha \Omega_0}^\dagger(\tau) = e^{\varepsilon_\alpha \mu \tau / \hbar} a_\alpha^\dagger \)

Noninteracting temperature propagator

• So not related by Hermitian conjugation!

• Evaluate propagator
 \[G_T^{(0)}(\alpha, \beta; \tau - \tau') = -\frac{1}{\hbar} \left\{ \theta(\tau - \tau') e^{-\varepsilon_\alpha \mu \tau / \hbar} e^{\varepsilon_\beta \mu \tau' / \hbar} \langle a_{\alpha} a_{\beta}^\dagger \rangle_0 \right. \]
 \[- \left. \theta(\tau' - \tau) e^{-\varepsilon_\alpha \mu \tau' / \hbar} e^{\varepsilon_\beta \mu \tau / \hbar} \langle a_{\beta}^\dagger a_{\alpha} \rangle_0 \right\} \]
 \[= -\frac{1}{\hbar} \delta_{\alpha \beta} e^{-\varepsilon_{\alpha \mu}(\tau - \tau') / \hbar} \left\{ \theta(\tau - \tau') (1 - n_{\alpha 0}^0) - \theta(\tau' - \tau) n_{\alpha 0}^0 \right\} \]

• Only diagonal terms and already evaluated
 \(\langle a_{\alpha} a_{\alpha}^\dagger \rangle_0 = 1 - \langle a_{\alpha}^\dagger a_{\alpha} \rangle_0 = 1 - n_{\alpha 0}^0 \)

• with
 \(\langle a_{\alpha}^\dagger a_{\alpha} \rangle_0 = n_{\alpha 0}^0 = \frac{1}{\exp \{ \beta \varepsilon_{\alpha \mu} \} + 1} \)

• Compare \(T=0 \) -> sharp distinction (blurred at finite \(T \))
 \[G^{(0)}(\alpha, \beta; t - t') = G_{+}^{(0)}(\alpha, \beta; t - t') + G_{-}^{(0)}(\alpha, \beta; t - t') \]
 \[= -\frac{i}{\hbar} \delta_{\alpha \beta} \left\{ \theta(t - t') \theta(\alpha - F) e^{-\frac{i}{\hbar} \varepsilon_{\alpha}(t-t')} - \theta(t' - t) \theta(F - \alpha) e^{\frac{i}{\hbar} \varepsilon_{\alpha}(t'-t)} \right\} \]
Energy formulation

• Check antiperiodicity: for \(-\hbar/\beta < \tau < 0\)

\[G_T^{(0)}(\alpha, \beta; \tau) = \frac{1}{\hbar} \delta_{\alpha \beta} e^{-\varepsilon_{\alpha \mu} \tau/\hbar} n_0^\alpha \]

\[G_T^{(0)}(\alpha, \beta; \tau + \hbar/\beta) = -\frac{1}{\hbar} \delta_{\alpha \beta} e^{-\varepsilon_{\alpha \mu} (\tau + \beta)/\hbar} (1 - n_0^\alpha) \]

• Note that \(-1 - n_0^\alpha = e^{\beta \varepsilon_{\alpha \mu} n_0^\alpha} \to OK\)

• Fourier coefficients

\[G_T^{(0)}(\alpha, \beta; E_n) = \delta_{\alpha, \beta} \frac{1}{iE_n - \varepsilon_{\alpha \mu}} \]

• for sp basis of eigenstates of noninteracting Hamiltonian

• If not

\[G_T^{(0)}(\alpha, \beta; E_n) = \sum_i \frac{z_{i\alpha} z_{i\beta}^*}{iE_n - \varepsilon_{i\mu}} \]

• with i labeling eigenstates of \(H_0\) and \(|i\rangle = \sum_{\alpha} z_{i\alpha} |\alpha\rangle\)

• HF at finite T later

Interaction-picture expansion at finite T

• Similar to T=0 development \(\to\) only sketch

• Start from \(\hat{\Omega} = \hat{\Omega}_0 + \hat{H}_1\) and equivalent of Schrödinger eq.

\[\hbar \frac{\partial}{\partial \tau} \exp(-\hat{\Omega} \tau/\hbar) = -\hat{\Omega} \exp(-\hat{\Omega} \tau/\hbar) \]

• Heisenberg picture finite T

\[\hat{O}_\Omega(\tau) = \exp\left\{ \hat{\Omega} \tau/\hbar \right\} \hat{O}_S \exp\left\{ -\hat{\Omega} \tau/\hbar \right\} \]

• Corresponding I picture

\[\hat{O}(\tau) = \exp\left\{ \hat{O}_0 \tau/\hbar \right\} \hat{O}_S \exp\left\{ -\hat{O}_0 \tau/\hbar \right\} \]

• Relate:

\[\hat{O}_\Omega(\tau) = \exp\left\{ \hat{\Omega} \tau/\hbar \right\} \exp\left\{ -\hat{\Omega}_0 \tau/\hbar \right\} \hat{O}(\tau) \exp\left\{ \hat{\Omega}_0 \tau/\hbar \right\} \exp\left\{ -\hat{\Omega} \tau/\hbar \right\} \]

\[= \hat{U}(0, \tau) \hat{O}(\tau) \hat{U}(\tau, 0) \]

• Evolution operator not unitary (but group property OK)

\[\hat{U}(\tau, \tau') = \exp\left\{ \hat{O}_0 \tau/\hbar \right\} \exp\left\{ -\hat{\Omega}(\tau - \tau')/\hbar \right\} \exp\left\{ -\hat{O}_0 \tau'/\hbar \right\} \]

• also \(\hat{U}(\tau, \tau) = 1\)
Evolution equation

From previous results

\[
\frac{\hbar}{\partial \tau} \hat{U}(\tau, \tau') = \exp \left\{ \hat{\Omega}_0 \tau / \hbar \right\} \left(\hat{\Omega}_0 - \hat{\Omega} \right) \exp \left\{ -\hat{\Omega}(\tau - \tau') / \hbar \right\} \exp \left\{ -\hat{\Omega}_0 \tau' / \hbar \right\} \\
= \exp \left\{ \hat{\Omega}_0 \tau / \hbar \right\} \left(\hat{\Omega}_0 - \hat{\Omega} \right) \exp \left\{ -\hat{\Omega}_0 \tau / \hbar \right\} \hat{U}(\tau, \tau') \\
= -\hat{H}_1(\tau) \hat{U}(\tau, \tau')
\]

with

\[
\hat{H}_1(\tau) = \exp \left\{ \hat{\Omega}_0 \tau / \hbar \right\} \hat{H}_1 \exp \left\{ -\hat{\Omega}_0 \tau / \hbar \right\}
\]

Operator equation solved as before

\[
\hat{U}(\tau, \tau') = \sum_{n=0}^{\infty} \left(\frac{-1}{\hbar} \right)^n \frac{1}{n!} \int_{\tau}^{\tau'} d\tau_1 \cdots \int_{\tau}^{\tau_n} d\tau_n \text{Tr} \left[\hat{H}_1(\tau_1) \cdots \hat{H}_1(\tau_n) \right]
\]

Rewrite earlier expression for evolution operator \star with \(\tau' = 0 \)

\[
\exp \left\{ -\hat{\Omega} \tau / \hbar \right\} = \exp \left\{ -\hat{\Omega}_0 \tau / \hbar \right\} \hat{U}(\tau, 0)
\]

With \(\tau = \beta \hbar \) --> expansion of grand partition function

\[
Z_G = \text{Tr} \left(e^{-\beta \hat{\Omega}} \right) = \text{Tr} \left(e^{-\beta \hat{\Omega}_0} \hat{U}(\hbar \beta, 0) \right) \\
= \sum_{n=0}^{\infty} \left(\frac{-1}{\hbar} \right)^n \frac{1}{n!} \int_0^{\hbar \beta} d\tau_1 \cdots \int_0^{\hbar \beta} d\tau_n \text{Tr} \left\{ e^{-\beta \hat{\Omega}_0} \text{Tr} \left[\hat{H}_1(\tau_1) \cdots \hat{H}_1(\tau_n) \right] \right\}
\]

Development

\cdot \text{Basically copying Ch.8.2 from now on}

\cdot \text{Consider } \tau - \tau' > 0 \quad (\text{case of } \tau - \tau' < 0 \text{ analogous})

\[
G_{T+}(\alpha, \beta; \tau - \tau') = -\frac{1}{\hbar} \frac{\text{Tr} \left(e^{-\beta \hat{\Omega}_0} a_{\alpha \beta}(\tau) a_{\beta \alpha}^\dagger(\tau') \right)}{\text{Tr} \left(e^{-\beta \hat{\Omega}_0} \right)} \\
= -\frac{\text{Tr} \left(e^{-\beta \hat{\Omega}_0} \hat{U}(\hbar \beta, 0) \left[\hat{U}(0, \tau) a_{\alpha \beta}(\tau) \hat{U}(\tau, 0) \right] \left[\hat{U}(0, \tau') a_{\beta \alpha}^\dagger(\tau') \hat{U}(\tau', 0) \right] \right)}{\text{Tr} \left(e^{-\beta \hat{\Omega}_0} \hat{U}(\hbar \beta, 0) \right)},
\]

\[
= 1 \frac{\text{Tr} \left(e^{-\beta \hat{\Omega}_0} \hat{U}(\hbar \beta, 0) \right)}{\text{Tr} \left(e^{-\beta \hat{\Omega}_0} \hat{U}(\hbar \beta, 0) \right)}
\]

\cdot \text{Use expansion for evolution operators (interaction subscript)}

\[
e^{-\beta \hat{\Omega}_0} \sum_{n=0}^{\infty} \left(\frac{-1}{\hbar} \right)^n \frac{1}{n!} \sum_{k,l,m=0}^{\infty} \delta_{n,k+l+m} \frac{n!}{k!l!m!} \int_{\tau}^{\hbar \beta} dx_1 \cdots \int_{\tau}^{\hbar \beta} dx_k \\
\times \text{Tr} \left[\hat{H}_1(x_1) \cdots \hat{H}_1(x_k) \right] a_{\alpha}(\tau) \int_{\tau'}^{\tau'} dy_1 \cdots \int_{\tau'}^{\tau'} dy_k \text{Tr} \left[\hat{H}_1(y_1) \cdots \hat{H}_1(y_k) \right] a_{\beta}^\dagger(\tau') \\
\times \int_{\tau}^{\tau'} dz_1 \cdots \int_{\tau}^{\tau'} dz_m \text{Tr} \left[\hat{H}_1(z_1) \cdots \hat{H}_1(z_m) \right] \\
= e^{-\beta \hat{\Omega}_0} \sum_{n=0}^{\infty} \left(\frac{-1}{\hbar} \right)^n \frac{1}{n!} \sum_{k,l,m=0}^{\infty} \delta_{n,k+l+m} \frac{n!}{k!l!m!} \int_{\tau}^{\hbar \beta} dx_1 \cdots \int_{\tau}^{\hbar \beta} dx_k \\
\times \text{Tr} \left[\hat{H}_1(x_1) \cdots \hat{H}_1(x_k) \hat{H}_1(y_1) \cdots \hat{H}_1(y_k) \hat{H}_1(z_1) \cdots \hat{H}_1(z_m) a_{\alpha}(\tau) a_{\beta}^\dagger(\tau') \right]
\]
Development

- Combinatorial factor --> extend boundaries to \([0, \hbar/\beta]\)
- Final result
 \[
 G_T(\alpha, \beta; \tau - \tau') = -\frac{\hbar}{\hbar} \sum_{n=0}^{\infty} \left(\frac{-1}{\hbar}\right)^n \frac{1}{n!} \int_0^{\hbar/\beta} d\tau_1 \cdots \int_0^{\hbar/\beta} d\tau_n \left\langle \mathcal{T}_\tau \left[\hat{H}_1(\tau_1) \cdots \hat{H}_1(\tau_n) a_\alpha(\tau) a_\beta(\tau') \right] \right\rangle_0
 \]
- Wick's theorem (no proof -> see Ch.24.2.1)
 \[
 \left\langle \mathcal{T}_\tau [\hat{x}_1 \hat{x}_2 \cdots \hat{x}_n] \right\rangle_0 = \text{sum of all fully contracted terms} = \left[\hat{x}_1^\dagger \hat{x}_2^\dagger \hat{x}_3^\dagger \cdots \hat{x}_n^\dagger \right] + \left[\hat{x}_1^\dagger \hat{x}_2^\dagger \hat{x}_3^\dagger \cdots \hat{x}_n^\dagger \right] + \ldots
 \]
- Contraction
 \[
 \hat{x}_i^\dagger \hat{x}_j^\dagger = \left\langle \mathcal{T}_\tau [\hat{x}_i \hat{x}_j] \right\rangle_0
 \]
- \(\times\) either addition or removal operator
- Only nonvanishing contraction
 \[
 a_\alpha^\dagger(\tau_i) a_\alpha(\tau_j) = -\hbar G_T^{(0)}(\alpha_i, \alpha_j; \tau_i - \tau_j) = -a_\alpha^\dagger(\tau_j) a_\alpha(\tau_i)
 \]

Diagrams at finite temperature

- Only connected diagrams
 \[
 G(\alpha, \beta; \tau - \tau') = -\frac{1}{\hbar} \sum_{n=0}^{\infty} \left(\frac{-1}{\hbar}\right)^n \frac{1}{n!} \int_0^{\hbar/\beta} d\tau_1 \cdots \int_0^{\hbar/\beta} d\tau_n \left\langle \mathcal{T}_\tau \left[\hat{H}_1(\tau_1) \cdots \hat{H}_1(\tau_n) a_\alpha(\tau) a_\beta(\tau') \right] \right\rangle_0 \text{connected}
 \]
- No new diagrams but some changes in translation
- Rules for \(m\text{th}\) order \(G_T(\alpha, \beta, \tau - \tau')\)

 Rule 1 Draw all topologically distinct and connected diagrams with \(m\) horizontal interaction lines for \(V\) (dashed) and \(2m + 1\) directed (using arrows) Green’s functions \(G_T^{(0)}\)

 Rule 2 Label the external points (\(\alpha\tau\) and \(\beta\tau'\)) using imaginary times. Label each interaction with an imaginary time \(\tau_i\) and sp quantum numbers
 \[
 \tau \Rightarrow \gamma_{\dot{\epsilon}} \cdots \delta_{\dot{\theta}} \Rightarrow (\gamma|\delta)_{V}[\epsilon|\theta]
 \]

 For each full line one writes
 \[
 \tau_i \Rightarrow \alpha \quad \Rightarrow G_T^{(0)}(\alpha, \beta; \tau_i - \tau_j)
 \]

 \[
 \tau_j \Rightarrow \beta
 \]

 Rule 3 Sum (integrate) over all internal sp quantum numbers and integrate all \(m\) internal \(\tau_i\) over the interval \([0, \hbar/\beta]\)

 Rule 4 Include a factor \((-\hbar)^m\) and \((-1)^F\) where \(F\) is the number of closed fermion loops

 Rule 5 Interpret equal imaginary times in a propagator as
 \[
 G_T^{(0)}(\alpha, \beta; \tau - \tau')
 \]
Rules

- Rule 3: factor \((-\hbar)^m = \frac{-1}{\hbar} \left(\frac{-1}{\hbar} \right)^m \) \((-\hbar)^{2m+1}\)
- Rule 5: reflects original order of operators
- Extra rules for auxiliary potential (and similar for external potential except for sign)

Rule 6 Label each \(U\) according to

\[
\Rightarrow \tau_i \quad \begin{array}{c} \alpha \\ \beta \end{array} \Rightarrow \langle \alpha | U | \beta \rangle
\]

Rule 7 Include a factor \((-1)^k\) and \(k\) additional propagators \(G_T^{(0)}\)

Example: first-order (antisymmetrized)

\[
\begin{align*}
\tau & \Rightarrow \alpha \\
\tau_1 & \Rightarrow \begin{array}{c} \gamma \\ \delta \end{array} \\
\tau' & \Rightarrow \beta \\
\Rightarrow (1) \ (-\hbar) \int_0^{\beta \hbar} d\tau_1 \sum_{\gamma \delta} \langle \gamma \delta | V | \epsilon \theta \rangle G_T^{(0)}(\alpha, \gamma; \tau_1) \times G_T^{(0)}(\theta, \delta; \tau_1 - \tau') G_T^{(0)}(\epsilon, \beta; \tau_1 - \tau')
\end{align*}
\]

Energy rules

- Note: we now deal with discrete Fourier series
- Instead of integrations: sums over Matsubara frequencies
- \(m^{th}\) order \(G_T(\alpha, \beta, E_n)\)

Rule 1 Draw all topologically distinct (direct) and connected diagrams with \(m\) horizontal interaction lines for \(V\) (dashed) and \(2m + 1\) directed (using arrows) Green’s functions \(G_T^{(0)}\)

Rule 2 Label external points only with sp quantum numbers, e.g. \(\alpha\) and \(\beta\)
Label each interaction with sp quantum numbers

\[
\begin{array}{c} \alpha \\ \beta \end{array} \quad \Rightarrow \langle \alpha \beta | V | \gamma \delta \rangle = (\alpha \beta | V | \gamma \delta) - (\alpha \beta | V | \delta \gamma)
\]

For an arrow line one writes

\[
\begin{array}{c} \alpha \\ \beta \end{array} \quad \Rightarrow G_T^{(0)}(\alpha, \beta; E_k) = \delta_{\alpha, \beta} \frac{1}{E_k - E_k}
\]

but in such a way that energy is conserved for every \(V\)

Rule 3 Sum (integrate) over all internal sp quantum numbers and sum over all \(m\) internal energies (which should be interpreted as Matsubara energies); a propagator starting and ending on the same interaction line should have a convergence factor \(e^{\frac{i}{\beta} E_k}\).

Rule 4 Include a factor \((-1/\beta)^m\) and \((-1)^F\) where \(F\) is the number of closed fermion loops

Rule 5 Include a factor of \(\frac{1}{2}\) for equivalent pairs of lines
Rules

- **Factor**: $(-1/\beta)^m$
 - discrete FT of an imaginary time term in this order yields $m+1$ τ-integrations
 - $2m+1$ propagators from time to frequency: $1/(\hbar\beta)^{2m+1}$
 - time integrations: $m+1 \rightarrow$ Kronecker deltas $(m+1)$ each providing $\hbar\beta$
 - combine with original factor $-\hbar^m$

- Ordering for same interaction $\rightarrow \mathcal{G}_T(\alpha\beta; \tau = 0^− = -\eta)$

- So
 $$\mathcal{G}_T(\alpha, \beta; \tau = -\eta) = \frac{1}{\beta\hbar} \sum_{n=-\infty}^{+\infty} \mathcal{G}_T(\alpha, \beta; E_n) e^{i\eta E_n}$$

- **U rules**: Rule 6 Label each U according to
 $$\begin{array}{ccc}
 \bullet & \otimes & \bullet \\
 \alpha & \beta
 \end{array} \Rightarrow \langle \alpha | U | \beta \rangle$$

Rule 7 Include a factor $(-1)^k$ and k additional propagators $G^{(0)}$

Example

- **First-order**
 $$\begin{array}{ccc}
 \bullet & \otimes & \bullet \\
 \alpha & \beta
 \end{array} \Rightarrow \sum_{\gamma\delta} G^{(0)}(\alpha, \gamma; E_n)$$

- Infinite sums over Matsubara energies $E_n = (2n + 1)\pi/\beta$ can be calculated by noting that the Fermi function $f(z) = 1/(1 + e^{\beta z})$ has its only singularities precisely at the imaginary Matsubara energies iE_n: all simple poles with residue $-1/\beta$

- Example: first-order self-energy
 $$\Sigma^{(1)}(\gamma, \delta; E_n) = \sum_{\theta} \langle \gamma\theta | V | \delta\theta \rangle S_{\theta}$$
First-order self-energy sum

- Energy sum
 \[S_\theta = \frac{1}{\beta} \sum_{m=-\infty}^{+\infty} \frac{e^{i\eta E_m}}{iE_m - \varepsilon_\theta \mu} = \sum_m F(iE_m). \]

- where the analytic function \(F(z) = \frac{1}{\beta} \frac{e^{\eta z}}{z - \varepsilon_\theta \mu} \) has a pole on the real axis

- Consider contour counterclockwise along large circle (-\(\to \) infinity) centered at the origin for \(\int_C dz \ f(z) F(z) \) \(f(z) = \frac{1}{1 + e^{\beta z}} \)

- For \(|z| \to \infty \) integrand \(\to \frac{e^{z(\eta - \beta)}}{z} \) for \(\text{Re} \ z > 0 \) and \(\to \frac{e^{\eta z}}{z} \) for \(\text{Re} \ z < 0 \)

- Since \(0 < \eta < \beta \) integral vanishes exponentially (infinite radius)

- Apply residue theorem -->

\[S_\theta = \frac{1}{\beta} \sum_m \left(-\frac{1}{\beta} \right) F(iE_m) + \frac{1}{\beta} e^{\eta \varepsilon_\theta \mu} f(\varepsilon_\theta \mu) \]

- and therefore \(S_\theta = f(\varepsilon_\theta \mu) = n_\theta^0 \) yields thermal occupation

- Same technique for higher-order diagrams

- Second-order self-energy

\[\Sigma^{(2)}(\gamma, \delta; E_n) = \frac{1}{2} \sum_{\lambda \epsilon \theta} \langle \gamma \lambda | V | \epsilon \theta \rangle \langle \epsilon \theta | V | \delta \lambda \rangle S_{\lambda \epsilon \theta} \]
more energy sums

\[S_{\lambda \epsilon \theta} = -\frac{1}{\beta^2} \sum_{k,m=-\infty}^{+\infty} \frac{1}{(iE_k - \epsilon \epsilon_{\mu})} \frac{1}{(iE_m - \epsilon \theta_{\mu})} \frac{1}{(iE_k + E_m - E_n - \epsilon \lambda_{\mu})} \]

\[= -\frac{1}{\beta^2} \sum_{k,m} \frac{1}{iE_k - \epsilon \epsilon_{\mu}} G(iE_m) \]

• Now relevant analytic function is

\[G(z) = \frac{1}{(z - \epsilon \theta_{\mu})} \frac{1}{(z + i(E_k - E_n) - \epsilon \lambda_{\mu})} \]

• \(\rightarrow \) single pole real axis plus additional ones

• Imaginary part of the latter EVEN multiples of \(\pi/\beta \) and don’t coincide with the poles of the Fermi function

• Again large circle contour of \(\int_C dz \, f(z)G(z) \) vanishes so residue theorem yields

\[0 = \sum_m \left(-\frac{1}{\beta} \right) G(iE_m) + \frac{f(\epsilon \theta_{\mu}) - f(\epsilon \lambda_{\mu})}{\epsilon \theta_{\mu} - \epsilon \lambda_{\mu} + i(E_k - E_n)} \]

• Note: \(f(\epsilon \lambda_{\mu} + i(E_n - E_k)) = f(\epsilon \lambda_{\mu}) \) was used

Final summation

• Inserting this result yields

\[S_{\lambda \epsilon \theta} = -\frac{1}{\beta} \sum_{k=-\infty}^{+\infty} \frac{f(\epsilon \theta_{\mu}) - f(\epsilon \lambda_{\mu})}{(iE_k - \epsilon \epsilon_{\mu})(iE_k - iE_n + \epsilon \theta_{\mu} - \epsilon \lambda_{\mu})} \]

• Use the same procedure to evaluate remaining Matsubara sum

\[S_{\lambda \epsilon \theta} = \frac{f(\epsilon \theta_{\mu}) - f(\epsilon \lambda_{\mu})}{iE_n + \epsilon \lambda_{\mu} - \epsilon \theta_{\mu} - \epsilon \epsilon_{\mu}} (f(\epsilon \epsilon_{\mu}) - f(iE_n + \epsilon \lambda_{\mu} - \epsilon \theta_{\mu})) \]

\[= \frac{n_0^0(1 - n_0^0)(1 - n_0^0) + (1 - n_0^0)n_0^0n_0^0}{iE_n + \epsilon \lambda_{\mu} - \epsilon \theta_{\mu} - \epsilon \epsilon_{\mu}} \]

• Compare with \(T=0 \) evaluation in second-order self-energy

\[\frac{\theta(\epsilon - F)\theta(\nu - F)\theta(F - \lambda)}{E - (\epsilon + \epsilon + \epsilon - \lambda) + i\eta} \quad + \quad \frac{\theta(F - \epsilon)\theta(F - \nu)\theta(\lambda - F)}{E + (\epsilon - \lambda - \epsilon - \nu) - i\eta} \]

• and note similarities and differences
Quantum Theory of Many-Particle Systems, Phys. 540

- Imaginary time / temperature propagator
- Diagrammatic expansion
- Examples of first- and second-order self-energy calculations doing Matsubara sums
- Other questions about last class and assignments?
- Comments?

Spectral representation

- What information is contained in finite T propagator?
- Select removal part of propagator (time version $\rightarrow 0^-$)

\[\hbar G_T(\alpha, \beta; 0^-) = \frac{1}{Z_G} \text{Tr} \left(e^{-\beta \hat{\Omega}} a_\beta^+ a_\alpha \right) = \langle a_\beta^+ a_\alpha \rangle \]

- So for a one-body operator: ensemble average

\[\langle \hat{O} \rangle = \sum_{\alpha, \beta} \langle \alpha | O | \beta \rangle \hbar G_T(\beta, \alpha; 0^-) \]

- In imaginary-energy version

\[\frac{1}{\beta} \sum_n e^{i\eta E_n} G_T(\alpha, \beta; E_n) = \langle a_\beta^+ a_\alpha \rangle \]

- Also at finite temperature it is possible to obtain the ensemble average of the two-body interaction from sp propagator (book)
Insert exact eigenstates

- Helps clarify content of sp propagator at finite T
- For \(\tau > 0 \)
 \[
 G_T(\alpha, \beta; \tau) = -\frac{1}{\hbar Z_G} \text{Tr} \left(e^{-\beta \hat{\Omega}} e^{\hat{\Omega} \tau / \hbar} a_\alpha e^{-\Omega \tau / \hbar} a_\beta^\dagger \right)
 = -\frac{1}{\hbar Z_G} \sum_{kl} e^{-\beta \Omega_k} z_{kl\alpha} z_{kl\beta}^* e^{-\tau (\Omega_l - \Omega_k) / \hbar}
 \]
- with \(z_{kl\alpha} = \langle \Psi_k | a_\alpha | \Psi_l \rangle \)
- Note double sum (unlike \(T=0 \)) so amplitudes more general
- Energy version
 \[
 G_T(\alpha, \beta; E_n) = -\frac{1}{\hbar Z_G} \sum_{kl} z_{kl\alpha} z_{kl\beta}^* e^{-\beta \Omega_k} \int_0^{\beta \hbar} d\tau \, e^{(\Omega_k - \Omega_l + i E_n) \tau / \hbar}
 = \frac{1}{Z_G} \sum_{kl} z_{kl\alpha} z_{kl\beta}^* \frac{e^{-\beta \Omega_l} + e^{-\beta \Omega_k}}{i E_n + \Omega_k - \Omega_l}
 \]

Connection

- Connection possible between
 \[
 G_T(\alpha, \beta; E_n) = -\frac{1}{\hbar Z_G} \sum_{kl} z_{kl\alpha} z_{kl\beta}^* e^{-\beta \Omega_k} \int_0^{\beta \hbar} d\tau \, e^{(\Omega_k - \Omega_l + i E_n) \tau / \hbar}
 = \frac{1}{Z_G} \sum_{kl} z_{kl\alpha} z_{kl\beta}^* \frac{e^{-\beta \Omega_l} + e^{-\beta \Omega_k}}{i E_n + \Omega_k - \Omega_l}
 \]
- and real-time propagator
 \[
 G_T(\alpha, \beta; t - t') = -\frac{i}{\hbar} \left\langle T [a_{\alpha \alpha}(t) a_{\beta \beta}(t')] \right\rangle = -\frac{i}{\hbar} \text{Tr} \left(\hat{T} [a_{\alpha \alpha}(t) a_{\beta \beta}(t')] \right)
 \]
- with FT
 \[
 G_T(\alpha, \beta; E) = \int_{-\infty}^{+\infty} dt(t - t') e^{i E(t-t')/\hbar} G_T(\alpha, \beta; t - t')
 \]
 \[
 G_T(\alpha, \beta; E) = \frac{1}{i \hbar Z_G} \sum_{kl} z_{kl\alpha} z_{kl\beta}^* e^{i (\Omega_k - \Omega_l)(t-t')/\hbar} \left\{ e^{-\beta \Omega_k} - \theta(t-t') e^{-\beta \Omega_l} \right\}
 \]
- then FT --> Lehmann
 \[
 G_T(\alpha, \beta; E) = \frac{1}{Z_G} \sum_{kl} z_{kl\alpha} z_{kl\beta}^* \left(\frac{e^{-\beta \Omega_k}}{E + \Omega_k - \Omega_l + i \eta} + \frac{e^{-\beta \Omega_l}}{E + \Omega_k - \Omega_l - i \eta} \right)
 \]
Spectral functions

- Introduce hermitian and antihermitian components of real-time propagator

\[\mathcal{H} G_T(\alpha, \beta; E) = \frac{1}{2} \left(G_T(\alpha, \beta; E) + G^*_T(\beta, \alpha; E) \right) \]

\[\mathcal{A} G_T(\alpha, \beta; E) = \frac{1}{2i} \left(G_T(\alpha, \beta; E) - G^*_T(\beta, \alpha; E) \right) \]

- Use Lehmann representation and the usual \(\frac{1}{x \pm i \eta} = \mathcal{P} \frac{1}{x \mp i \pi \delta(x)} \) \(\rightarrow \)

\[\mathcal{H} G_T(\alpha, \beta; E) = \frac{1}{Z_G} \sum_{kl} z_{k\alpha} z_{k\beta}^* e^{-\beta \Omega_k} \mathcal{P} \frac{1 + e^{\beta(\Omega_k - \Omega_l)}}{E + \Omega_k - \Omega_l} \]

\[\mathcal{A} G_T(\alpha, \beta; E) = \frac{\pi}{Z_G} \sum_{kl} z_{k\alpha} z_{k\beta}^* e^{-\beta \Omega_k} \delta(E + \Omega_k - \Omega_l)(e^{\beta(\Omega_k - \Omega_l)} - 1) \]

\[= - \frac{\pi}{Z_G} \sum_{kl} z_{k\alpha} z_{k\beta}^* e^{-\beta \Omega_k} \delta(E + \Omega_k - \Omega_l)(1 + e^{\beta(\Omega_k - \Omega_l)}) \tanh\left(\frac{\beta E}{2} \right) \]

Dispersion relation

- Linked by dispersion relation

\[\mathcal{H} G_T(\alpha, \beta; E) = -\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{dE'}{E - E'} \mathcal{A} G_T(\alpha, \beta; E') \coth\left(\frac{\beta E'}{2} \right) \]

- Introduce spectral function matrix as basic quantity

\[S(\alpha, \beta; E) = \frac{1}{Z_G} \sum_{kl} z_{k\alpha} z_{k\beta}^* e^{-\beta \Omega_k} \delta(E + \Omega_k - \Omega_l)(1 + e^{-\beta E}) \]

- since \(\mathcal{H} G_T(\alpha, \beta; E) = \mathcal{P} \int_{-\infty}^{+\infty} \frac{dE'}{E - E'} S(\alpha, \beta; E') \)

- and \(\mathcal{A} G_T(\alpha, \beta; E) = -\pi \tanh\left(\frac{\beta E}{2} \right) S(\alpha, \beta; E) \)
More spectral function matrix

• Rewrite spectral matrix

\[S(\alpha, \beta; E) = \frac{1}{Z_G} \sum_{kl} z_{kl\alpha} z_{kl\beta}^* \delta(E + \Omega_k - \Omega_l)(e^{-\beta \Omega_k} + e^{-\beta \Omega_l}) \]

• Limit \(T \to 0 \) last factor filters only ground-state contribution from each summation

• Sum rule

\[\int_{-\infty}^{+\infty} dE \ S(\alpha, \beta; E) = \frac{1}{Z_G} \sum_{kl} z_{kl\alpha} z_{kl\beta}^* (e^{-\beta \Omega_k} + e^{-\beta \Omega_l}) = \langle \hat{\rho} G a_\alpha a_\beta + \hat{\rho} G a_\beta a_\alpha \rangle = \delta_{\alpha\beta} \]

• Important: same spectral function matrix determines imaginary-energy propagator!!

\[G_T(\alpha, \beta; E_n) = \int_{-\infty}^{+\infty} \frac{dE'}{iE_n - E'} S(\alpha, \beta; E') \]

Connection

• Appears convenient way to calculate one from the other propagator (the latter \(\to \) diagrams)

• Requires analytic continuation (OK)

• Real-time propagator obtained from

\[S(\alpha, \beta; E) = \frac{1}{2\pi i} [G_T(\alpha, \beta; -iE - \eta) - G_T(\alpha, \beta; -iE + \eta)] = \frac{1}{\pi} AG_T(\alpha, \beta; -iE - \eta) \]

• and earlier results

• Example of noninteracting system in the book
Dyson equation

- Analysis identical to T=0
- So immediately (introducing irreducible self-energy at finite T)
 \[G_T(\alpha, \beta; E_n) = G_T^{(0)}(\alpha, \beta; E_n) + \sum_{\gamma\delta} G_T^{(0)}(\alpha, \gamma; E_n) \Sigma(\gamma, \delta; E_n) G_T(\delta, \beta; E_n) \]
- Homogeneous systems (suppressing discrete quantum numbers)
 \[G_T(p_\alpha, p_\beta; E_n) = \delta_{p_\alpha, p_\beta} G_T(p_\alpha; E_n) \]
- Inverse of noninteracting propagator
 \[\frac{1}{G_T^{(0)}(p; E_n)} = iE_n - \varepsilon(p) + \mu \]
- So solution
 \[G_T(p_\alpha; E_n) = \frac{1}{iE_n - \varepsilon(p) + \mu - \Sigma(p; E_n)} \]
- Spectral function (see previous slide)
 \[S(p; E) = \frac{1}{\pi} \text{Im} \frac{1}{E - \varepsilon(p) + \mu - \Sigma(p; -iE - \eta)} \]

Observations

- Quasiparticle excitations --> energy
 \[E_Q(p) = \varepsilon(p) - \mu + \text{Re} \Sigma(p; -iE_Q(p) - \eta) \]
- where spectral function peaks
- Width
 \[W(p; E) = \frac{1}{\pi} \text{Im} \Sigma(p; -iE - \eta) \]
- Small near chemical potential at low temperature
- At finite temperature width remains finite
- Spectral functions illustrated later
Hartree-Fock at finite T

• Use self-consistent lowest-order self-energy
 \[\Sigma^{HF}(\gamma, \delta; E_n) = \frac{1}{\beta} \sum_{\epsilon \theta} \langle \gamma \epsilon | V | \delta \theta \rangle \sum_k G_T(\theta, \epsilon; E_k)e^{i\eta E_k} \]

• Use result from Matsubara sum
 \[\Sigma^{HF}(\gamma, \delta) = \sum_{\epsilon \theta} \langle \gamma \epsilon | V | \delta \theta \rangle \langle a^\dagger_\epsilon a_\theta \rangle \]

• average of tp interaction over ensemble average of one-body density matrix at finite T -- still static as for T=0

• Again HF solution has noninteracting form
 \[G_T^{HF}(\alpha, \beta; E_n) = \sum_i \frac{z^{HF}_i z^{HF*}_i}{iE_n - \epsilon_{i\mu}} \]

• with
 \[\sum_\delta \{ \langle \gamma | T | \delta \rangle + \Sigma^{HF}(\gamma, \delta) \} z^{HF*}_\delta = \epsilon^{HF}_i z^{HF}_\gamma \]

• self-consistency from
 \[\Sigma^{HF}(\gamma, \delta) = \sum_{\epsilon \theta} \langle \gamma \epsilon | V | \delta \theta \rangle \left(\sum_i z^{HF}_i z^{HF*}_i f(\epsilon_i - \mu) \right) \]

more HF

• HF potential depends on HF orbitals but ALSO on HF spectrum through thermal occupation factors \(f(\epsilon_{i\mu}) \)

• Consequence for homogeneous system!

• At finite T
 \[\epsilon^{HF}(p) = \frac{p^2}{2m} + \sum_{p'} \langle pp' | V | pp' \rangle f(\epsilon^{HF}(p') - \mu) \]

• represents a self-consistency problem (see later for an example of momentum distribution in HF)

• Skip formalism for treatment of SRC at finite T

• Show some results
Applications

• Arnau Rios thesis results (University of Barcelona 2007)
• Realistic CDBonn interaction (moderately soft)
• Spectral functions for three typical momenta $\rightarrow 0, k_F, 2k_F$
• $T = 10$ MeV
• Dotted: Fermi function
• 5 densities
• Extra width $\leftrightarrow T$

Temperature dependence

• Same momenta
• Density $\rho = 0.16$ fm$^{-3}$
• Width computationally helpful compared to sharp features at $T=0$
• Zero at Fermi energy for $T=0$ disappears \rightarrow at most a dip
• Tails hardly T-dependent
Momentum distribution

- Interplay between thermal and short-range correlations
- $T = 5 \text{ MeV}$
 - $\rho = 0.32 \text{ fm}^{-3}$
- Scales

Pairing at finite T

- Similar development as for $T=0$
- Direct transcription possible from $T=0$
- Gorkov equations
 \[
 G_{11T}(pm; E_n) = G_{11T}^{(0)}(pm; E_n) + G_{11T}^{(0)}(pm; E_n)\Sigma_{11}(pm; E_n)G_{11T}(pm; E_n) \\
 + G_{11T}^{(0)}(pm; E_n)\Sigma_{12}(pm; E_n)G_{21T}(pm; E_n)
 \]
 \[
 G_{21T}(pm; E_n) = G_{22T}^{(0)}(pm; E_n)\Sigma_{21}(pm; E_n)G_{11T}(pm; E_n) \\
 + G_{22T}^{(0)}(pm; E_n)\Sigma_{22}(pm; E_n)G_{21T}(pm; E_n)
 \]
- Noninteracting propagators
 \[
 G_{11T}^{(0)}(pm; E_n) = \frac{1}{iE_n - \varepsilon_{p\mu}}
 \]
 \[
 G_{22T}^{(0)}(pm; E_n) = \frac{1}{iE_n + \varepsilon_{p\mu}}
 \]
- Solution similar structure as for $T=0$
\[G_{11}^{(0)}(p; E_n) = G_{11}^{N}(p; E_n) + G_{11}^{N}(p; E_n) \Sigma_{12}(p; E_n) G_{21}(p; E_n) \]
\[G_{21}(p; E_n) = G_{22}^{N}(p; E_n) \Sigma_{21}(p; E_n) G_{11}^{N}(p; E_n) \]

* Check equivalence

* Useful for strong normal self-energy

\[G_{21}(p; E_n) = G_{N22}^{(0)}(p; E_n) + \Sigma_{21}(p; E_n) G_{11}^{N}(p; E_n) \]

\[G_{22}(p; E_n) = G_{N22}^{(0)}(p; E_n) + \Sigma_{21}(p; E_n) G_{11}^{N}(p; E_n) \]

\[\Sigma_{21}(p; E_n) = \left(-1\right) \left(-\frac{1}{\beta}\right) \sum_{p'} \frac{W(p - p')}{V} \sum_{n} e^{iE_n} G_{21}(p' m; E_n) \]
\[= \frac{1}{\beta} \sum_{p'} \frac{W(p - p')}{V} \sum_{n} e^{iE_n} G_{22}^{N}(p' m; E_n) \Sigma_{21}(p' m) G_{11}^{N}(p' m; E_n) \]

* Last equality from second Gorkov equation

* For now only include normal HF self-energy

\[G_{22}^{N}(p; E_n) \rightarrow G_{22}^{HF}(p; E_n) = \frac{1}{iE_n + \chi_p} \]

* with \(\chi_p = \epsilon_{p\mu} + V_p \)

* Anticipate \(G_{11}^{N}(p; E_n) \rightarrow \frac{u_p^2}{iE_n - E_p} + \frac{v_p^2}{iE_n + E_p} \)

* with \(E_p = \sqrt{\chi_p^2 + \Delta_p^2} \)
Development

• As in Ch.22 we write \(\Sigma_{21}(pm) = \Delta_p s_m \)

• Combine, use same expressions for residues of superfluid propagators as in Ch.22, and evaluate Matsubara sum (decompose in partial fractions) \(\rightarrow \) gap equation at finite \(T \)

\[
\Delta_p = -\frac{1}{2} \sum_{p'} \frac{W(p-p') \Delta_{p'}}{E_{p'}} \text{tanh} \left(\frac{\beta E_{p'}}{2} \right)
\]

• Reduces to gap equation for \(T \rightarrow 0 \)

• Study for simplified case simulating normal superconductors when \(c \) is identified with Debye energy

• Same steps: \(1 = \frac{\lambda}{2} \int_{-c}^{+c} d\chi \frac{D(\chi)}{\sqrt{\chi^2 + \Delta^2}} \text{tanh} \left(\frac{\beta}{2} \sqrt{\chi^2 + \Delta^2} \right) \)

• Study for \(T \rightarrow T_c \) where gap vanishes

Further development

• As in Ch.18 we extract density of states at the Fermi energy

• Using symmetry of the integrand and putting \(z = \beta \chi / 2 \)

\[
\frac{1}{\lambda D(0)} = \int_0^{\beta c/2} \frac{dz}{z} \text{tanh} z
\]

• Integrating by parts

\[
\frac{1}{\lambda D(0)} = [\ln z \text{tanh} z]_0^{\beta c/2} - \int_0^{\beta c/2} \frac{dz}{z} \ln z \text{sech}^2 z
\]

• Practical cases upper limit large \(\rightarrow \) infinity \(\rightarrow \) look up integral and rewrite \(k_B T_c = \frac{2 e^\gamma}{\pi} c e^{-1/\lambda D(0)} \approx 1.13 c e^{-1/\lambda D(0)} \)

• \(\gamma \approx 0.5772 \) Euler’s constant

• Compare with \(T=0 \) gap \(\rightarrow \) ratio \(\frac{\Delta_{T=0}}{k_B T_c} = \pi e^{-\gamma} \approx 1.76 \)

• In good agreement with data and independent of material

• Other results see book and FW
Gorkov equations with dressed propagators

• Infinite nuclear systems display pairing instabilities when ladder diagrams are summed

• BCS treatment of $^3S_1-^3D_1$ interaction generates large gaps inconsistent with empirical information

• But: SRC change sp propagators substantially → may have a large effect on pairing properties

• Study pairing with normal self-energy terms due to SRC included

• Normal propagator

\[
G_{22T}^N(pm; E_n) = \int_{-\infty}^{\infty} dE \frac{S(p; E)}{iE_n + E}
\]

• Superfluid propagator

\[
G_{11T}^N(pm; E_n) = \int_{-\infty}^{\infty} dE' \frac{S_s(p; E')}{iE_n - E'}
\]

Energy sum in gap equation

• Defines generalized denominator in gap equation

\[
- \frac{1}{2E_p'} \equiv \frac{1}{\beta} \sum_n e^{i\eta E_n} \int_{-\infty}^{\infty} dE \frac{S(p; E)}{iE_n + E} \int_{-\infty}^{\infty} dE' \frac{S_s(p; E')}{iE_n - E'}
\]

\[
= \int_{-\infty}^{\infty} dE \int_{-\infty}^{\infty} dE' S(p; E)S_s(p; E') \frac{1 - f(E) - f(E')}{-E - E'}
\]

• In spite of denominator, integrand well-behaved (see earlier)

• Nuclear applications require gap equation in partial-wave basis to treat strong state dependence of NN interaction

• Also need pairing with S=1 quantum numbers for example

• Generalize gap equation to allow more general spin structure

\[
\Delta_{pmm'} = -\frac{1}{2} \sum_{p'\tilde{m}\tilde{m}'} (pm - pm'|V|p'\tilde{m} - p'\tilde{m}') \frac{\Delta p'\tilde{m}\tilde{m}'}{E_{p'}} \tanh \left(\frac{\beta E_{p'}}{2} \right)
\]
Generalized gap equation

- Total spin --> orbital angular momentum --> possible coupled channel --> total angular momentum

\[\Delta_{pmm'} = \sum_{\ell m_{\ell}} \left(\frac{1}{2} m \frac{1}{2} m' |S \ m + m' \right) \]

\[(S \ m + m' \ \ell \ m_{\ell} |J \ m + m' + m_{\ell}) Y_{\ell m_{\ell}}(\hat{p}) \Delta^{JST}_{\ell}(p) \]

- If energy denominator is angle-averaged (assumed in energy sum), gap function does not depend on projection of total angular momentum --> gap equation

\[\Delta^{JST}_{\ell}(p) = -\frac{1}{2} \sum_{\ell'} \int_{0}^{\infty} dp' p'^2 \langle \ell' | V^{JST} | \ell' \rangle \Delta^{JST}_{\ell'}(p') \]

- Extra factor \(\frac{1}{2} \) --> antisymmetrized matrix elements

Link with BCS

- Energy sum

\[-\frac{1}{2E_p} = \frac{1}{\beta} \sum_{n} e^{i\eta E_n} \int_{-\infty}^{\infty} dE \frac{S(p; E)}{iE_n + E} \int_{-\infty}^{\infty} dE' \frac{S_s(p; E')}{iE_n - E'} \]

\[= \int_{-\infty}^{\infty} dE \int_{-\infty}^{\infty} dE' S(p; E)S_s(p; E') \left(1 - f(E) - f(E') \right) \frac{1}{-E - E'} \]

- Insert in energy sum

\[S_s(p'; E') = \delta(E - \chi_{p'}) \]

\[S_s(p'; E') = \left(\frac{E_{p'}}{2E_{p'}} \delta(E' - E_{p'}) + \frac{E_{p'} - \chi_{p'}}{2E_{p'}} \delta(E' + E_{p'}) \right) \]

- yields standard BCS equation

- Ignoring difference between \(S \) and \(S_s \), gap equation corresponds to homogeneous scattering equation at \(E_{tot} = 0 \) and total momentum zero --> ladder equation must generate a pole at that energy --> bound two-particle state --> pairing if fullfilled
Normal self-energy properties

- Temperature dependence of self-consistently calculated imaginary part of self-energy
- \(k = 225 \text{ MeV/c} \)
- \(T = 4, 7, \text{ and } 10 \text{ MeV above critical temperature for pairing} \)
- Empirical density
- CDBonn interaction
- \(T=0 \) extrapolated with the constraint that it vanishes at the Fermi energy

Normal self-energy for nuclear and neutron matter

- Both real and imaginary parts for Argonne V18 and CDBonn interactions
- \(k = 225 \text{ MeV/c} \)
- Nuclear matter normal density
- Neutron matter
 \(\rho = 0.08 \text{ fm}^{-3} \)
- \(T = 5 \text{ MeV} \)
- Different interactions!
- Depletion at \(k = 0 \) 11\% for CDBonn and 13\% for Argonne V18
Numerical solution of the gap equation

\[\Delta(k) = \sum \langle k, \bar{k} | V | k', \bar{k}' \rangle \frac{\Delta(k')}{\omega - 2E(k')} \text{ with } E(k) = \sqrt{(\epsilon_k - \mu)^2 + \Delta(k)^2} \text{ and } \omega = 0 \]

Define:

\[\delta(k) = \frac{\Delta(k)}{\omega - 2E(k)} \]

\[
\begin{bmatrix}
2E(k_1) + \langle k_1 | V | k_1 \rangle & \cdots & \langle k_1 | V | k_N \rangle \\
\vdots & \ddots & \vdots \\
\langle k_N | V | k_1 \rangle & \cdots & 2E(k_N) + \langle k_N | V | k_N \rangle
\end{bmatrix}
\begin{bmatrix}
\delta(k_1) \\
\vdots \\
\delta(k_N)
\end{bmatrix} = \omega
\begin{bmatrix}
\delta(k_1) \\
\vdots \\
\delta(k_N)
\end{bmatrix}
\]

Eigenvalue problem for a pair of nucleons at \(\omega = 0 \)

Steps of the calculation:

- Assume \(\Delta(k) \) and determine \(E(k) \)
- Solve eigenvalue equation and evaluate new \(\Delta(k) \)
 - If lowest eigenvalue \(\omega < 0 \) enhance \(\Delta(k) \) (resp. \(\delta(k) \))
 - If lowest eigenvalue \(\omega > 0 \) reduce \(\Delta(k) \)
- Repeat until convergence

Pairing of strongly correlated nucleons

Standard BCS results

- Gap functions for symmetric and neutron matter at corresponding densities
- Spectrum
 \[\varepsilon(p) = \chi_p + \mu \]
- from
 \[\varepsilon(p) = \frac{p^2}{2m} + \text{Re} \sum(p, \varepsilon(p) - \mu) \]
- extrapolated to \(T = 0 \)
 (necessary because of pairing instabilities)
- Nuclear matter gap too large but similar for both interactions

Nuclear matter

\[^3S_1-^3D_1 \quad \Delta = \sqrt{\Delta_0^2 + \Delta_2^2} \]

Neutron matter

\[^1S_0 \]

Argonne V18 dashed

QMPT 540
Pairing with dressed nucleons

- Clarify role of SRC and temperature
- Evaluate (note both correspond to normal spectral functions)
 \[
 \frac{1}{-2\tilde{\chi}_p} \equiv \int_{-\infty}^{+\infty} dE \int_{-\infty}^{+\infty} dE' S(p; E)S(p; E') \frac{1 - f(E) - f(E')}{-E - E'}
 \]
 - defining average energy denominator
- Mean-field limit uses \(S(p; E) = \delta(E - \chi_p) \) at \(T=0 \)
- Prescription generates
 \[
 \frac{1}{-2\tilde{\chi}_p} \xrightarrow{mf, T=0} \frac{1}{-2|\chi_p|}
 \]
 - \(\tilde{\chi}_p \) clarifies role of \(T \) and SRC
- \(T=0 \) qp; \(T=5 \) qp; \(T=5 \) with SRC

Gap in nuclear matter \(^3S_1-^3D_1 \)

- Gap at the Fermi momentum
- CDBonn
 - Densities
 - 0.04 fm\(^{-3}\) dashed
 - 0.08 fm\(^{-3}\) dot-dashed
 - 0.16 fm\(^{-3}\) dotted
 - Thin lines: dressed
- Normal density no longer superfluid!!!!!!
- No longer inconsistent with empirical information from nuclei
- \(T \)-dependence \(\neq \) BCS
Superfluid spectral function

- Solid with
- Dashed without pairing
- $p = 193$ MeV/c
- $T = 0.5$ MeV
- Nuclear matter
 - $\rho = 0.08$ fm$^{-3}$
- Pairing effect \sim as BCS

\[2\pi S(p;E) \text{[MeV]}^{-1} \]
\[E \text{[MeV]} \]

Gap in neutron matter

- 1S_0 gap in neutron matter as function of T for CDBonn
- Densities
 - 0.02 fm$^{-3}$ dashed
 - 0.04 fm$^{-3}$ solid
 - 0.08 fm$^{-3}$ dotted
 - thin with SRC
- No pairing at 0.08!
Comparison for neutron matter
with CBF & Monte Carlo PRL95,192501(2005)

End of lectures

• Hope you found the course useful
• Thanks for participating!
• Don’t forget to do course evals