WASHINGTON UNIVERSITY
DEPARTMENT OF PHYSICS
St. Louis, Missouri 63130

Students Accepted
For Degree

FIELDS

PhD

Astronomy
Related Fields

Doctorate
X

Master's
X

1. General
Chancellor: Mark S. Wrighton
Dean of Graduate School: Richard Smith
Type of Institution: Private University
Department Chairman: Kenneth F. Kelton
Department Telephone Number: (314) 935-6276
Web site: physics.wustl.edu
E-mail: jmh@wustl.edu
Type of Institution: University
Control: Private
Setting: Suburban
Total Faculty: 3,297
Total Students: 13,761
Total Graduate Students: 6,651
Annual Graduate Tuition:
All Graduate Students: Full-time—$39,400
Part-time—$1,642/credit
Tuition rates for: 2010–11
Deferred tuition plan: No
Annual Other Fees: None
Term: Semester

2. Number of Faculty in Department
The combined total of full-time faculty in the three professorial ranks is 27. The combined total of full-time, part-time, and other faculty at all ranks is 36.

3. Admission, Financial Aid, and Housing
Address admission inquiries to: Julia M. Hamilton, Washington University, Department of Physics, One Brookings Drive, CB 1105, St. Louis, MO 63130-4899, jmh@wustl.edu
Graduate application fee required: $45
Admission deadline (Fall admission): 12/31
Admission information: For fall admission, 2009–10, 14 students were admitted. There were 139 applicants.
Admission requirements: For admission to the graduate programs, a Bachelor’s degree is required with no minimum undergraduate GPA specified. The average GRE scores for those who were offered admission for 2008–09 were: verbal—546; quantitative—772; analytic—N.A.; and advanced—760. Both the GRE and GRE Advanced are required. No minimum acceptable score is specified. Students from non-English speaking countries are required to demonstrate proficiency in English via the TOEFL. The minimum acceptable score is 550.
Undergraduate preparation assumed: Mechanics: Marion, Classical Dynamics of Particles and Systems; Electromagnetic Theory: Lorrain and Corson, Electromagnetic Fields and Waves; Statistical Physics: Reif, Statistical and Thermal Physics; Mathematics, through the level of advanced calculus.
GAPSFAS application required: No

Financial aid deadline: 12/31
Loans available: No
Address housing inquiries to: Off-Campus Housing, Box 1075, Telephone (314) 935–5092
On-campus, student housing available: No

Table A—Faculty, Enrollments, and Degrees Granted

<table>
<thead>
<tr>
<th>Research Specialty</th>
<th>2008–09 Faculty</th>
<th>Enrollment¹</th>
<th>No. of Degrees Granted²</th>
<th>Median No. of Years for 2009–10 Ph.D.'s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master's</td>
<td>Doctorate</td>
<td>Master's</td>
<td>Terminal Master's</td>
</tr>
<tr>
<td>Astrophysics</td>
<td>5</td>
<td>8</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>Biological</td>
<td>3</td>
<td>8</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>Biomedical & Health Physics</td>
<td>2</td>
<td>13</td>
<td>0(3)</td>
<td>0(3)</td>
</tr>
<tr>
<td>Condensed Matter Physics</td>
<td>7</td>
<td>15</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>Nuclear Physics</td>
<td>2</td>
<td>4</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>Particles & Fields</td>
<td>5</td>
<td>4</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>Relativity & Gravitation</td>
<td>2</td>
<td>2</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>Space Physics</td>
<td>6</td>
<td>2</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>Non-specialized</td>
<td>0</td>
<td>27</td>
<td>7(52)</td>
<td>1(6)</td>
</tr>
<tr>
<td>Total</td>
<td>–</td>
<td>83</td>
<td>10(68)</td>
<td>1(6)</td>
</tr>
</tbody>
</table>

¹Students not yet committed to a research specialty are entered under non-specialized.
²Five-year totals in parentheses.

4. Graduate Degree Requirements
Master's: 30 semester-hours, with “B” average; one year in residence required. No foreign language requirement. 30 semester hours of satisfactory course credits, at least 24 in graduate-level classroom or seminar courses, and at least 12 hours in core graduate courses. Students must maintain a grade point average of B or better. A thesis is not required, but if a satisfactory thesis is submitted, only 24 semester-hours are required.

Doctorate: 72 graduate semester-hours in physics, mathematics, and other approved subjects, including credit earned on thesis research and in supervised teaching. GPA of “B” required in classroom courses. At least two years full-time residence. Experience and demonstrated competence in the teaching of physics is required. No foreign language requirement. Students must take a total of six core 500-level courses. Students are required to pass an oral examination on advanced physics at a level appropriate for a student beginning research in that area. Submission of an original research dissertation, and an oral examination in defense of the dissertation.

Thesis: Thesis may be written in absentia.

Special Equipment, Facilities, or Programs: McDonnell Center for the Space Sciences. NANOSIMS—This first-of-its kind instrument is capable of making precise isotopic measurements at a spatial resolution ≤1000Å. Laboratory for Experimental Astrophysics. Laboratory for Ultrasonics with the as-
-associated Biomedical Physics Program, Cardiovascular Biophysics Laboratory in collaboration with the Washington University School of Medicine. Center for Materials Innovation in collaboration with the departments of Chemistry and Earth and Planetary Sciences, and the School of Engineering and Applied Science, Laboratory for High Pressure Physics. The JEOL 2100F scanning transmission electron microscope measures structure and composition of materials at nm-scale. Laboratory for high precision isotope analyses of noble gases.

Table B—Appointments to Graduate Students, 2009–10

<table>
<thead>
<tr>
<th>Title of Appointee</th>
<th>Appointments</th>
<th>Academic Load</th>
<th>Hours of Service</th>
<th>Stipend for Academic Year ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Fellow</td>
<td>23</td>
<td>11<sup>1</sup></td>
<td>15</td>
<td>19,110<sup>2,5</sup></td>
</tr>
<tr>
<td>Dean’s University</td>
<td>15</td>
<td>12</td>
<td>19,110<sup>2,5</sup></td>
<td></td>
</tr>
<tr>
<td>Compton Fellow</td>
<td>1</td>
<td>1</td>
<td>6,644</td>
<td></td>
</tr>
<tr>
<td>Research Assistant</td>
<td>27</td>
<td>9</td>
<td>variable</td>
<td>19,110<sup>2,5</sup></td>
</tr>
<tr>
<td>GAANN</td>
<td>7</td>
<td>12</td>
<td>30,000<sup>9</sup></td>
<td></td>
</tr>
<tr>
<td>McDonnell Graduate Fellow</td>
<td>1</td>
<td>9</td>
<td>25,000<sup>9,10</sup></td>
<td></td>
</tr>
<tr>
<td>McDonnell Astronaut Fellow</td>
<td>0</td>
<td>9</td>
<td>30,000<sup>9,4</sup></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>22,000<sup>3,9</sup></td>
</tr>
<tr>
<td>NIH Graduate Fellow</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>N.A.</td>
</tr>
<tr>
<td>NSF Graduate Fellow</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>30,000</td>
</tr>
<tr>
<td>Dissertation Fellow</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>19,110<sup>2,3</sup></td>
</tr>
<tr>
<td>Academic Hughes</td>
<td>0</td>
<td>11</td>
<td>3,000<sup>6</sup></td>
<td></td>
</tr>
<tr>
<td>Summer Hughes</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>26,250<sup>3,7</sup></td>
</tr>
</tbody>
</table>

Total 84 15

¹Includes 9 credit hours for physics courses, 2 for supervised teaching.
²$19,110 for 2009–10.
³Plus tuition remission.
⁴$30,500 for 2008–09.
⁵During the first 5 years of graduate study, a Tuition Remission Scholarship is usually concurrent with a Teaching or Research Assistantship.
⁶This is in addition to the stipend from a concurrent appointment, such as a Teaching Fellowship. It is awarded in recognition of superior academic achievement or promise. $3,000 for 2008–09.
⁷$21,735 for 2008–09. May be supplemented by a Research Assistantship in the summer.
⁸$30,000 for 2008–09. Graduate Assistance in Areas of National Need, appointment from September–August.
⁹Academic-year rate.
¹⁰$25,000 for 2008–09.

5. Personnel Engaged in Separately Budgeted Research, 7/09–6/10

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professorial faculty</td>
<td>23</td>
</tr>
<tr>
<td>Other faculty—Res. Prof.</td>
<td>7</td>
</tr>
<tr>
<td>Postdoctoral appointments</td>
<td>11</td>
</tr>
<tr>
<td>Graduate students</td>
<td>42</td>
</tr>
<tr>
<td>Undergraduate students</td>
<td>16</td>
</tr>
<tr>
<td>Nonteaching research personnel</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>106</td>
</tr>
</tbody>
</table>

6. Separately Budgeted Research Expenditures by Source of Support

<table>
<thead>
<tr>
<th>Source of Support</th>
<th>Expenditures ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal government</td>
<td>5,983,076</td>
</tr>
<tr>
<td>Business and industry</td>
<td>83,300</td>
</tr>
<tr>
<td>Total</td>
<td>6,066,376</td>
</tr>
</tbody>
</table>

Table C—Separately Budgeted Research Expenditures[*]

<table>
<thead>
<tr>
<th>Research Specialty</th>
<th>No. of Grants</th>
<th>Expenditures ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrophysics</td>
<td>18</td>
<td>1,824,412</td>
</tr>
<tr>
<td>Space Physics</td>
<td>19</td>
<td>1,887,332</td>
</tr>
<tr>
<td>Biophysics</td>
<td>3</td>
<td>406,421</td>
</tr>
<tr>
<td>Condensed Matter Physics</td>
<td>14</td>
<td>541,147</td>
</tr>
<tr>
<td>Medical & Health Physics</td>
<td>14</td>
<td>735,652</td>
</tr>
<tr>
<td>Particles & Fields</td>
<td>4</td>
<td>511,886</td>
</tr>
<tr>
<td>Relativity & Gravitation</td>
<td>2</td>
<td>159,726</td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>6,066,376</td>
</tr>
</tbody>
</table>

Entries based on 10 months.

FACULTY

Professors

- **Bernatowicz**, Thomas, Ph.D., Washington (St. Louis), 1980. Astrophyxics; extraterrestrial materials; mass spectrometry and transmission electron microscopy.
- **Clark**, John W., Ph.D., Washington (St. Louis), 1959. Wayman Crow Professor of Physics. Theoretical physics and astrophysics; many-body theory; neural networks; quantum control theory.
- **Conradi**, Mark S., Ph.D., Washington (St. Louis), 1977. Experimental condensed matter physics; high-pressure systems; hydrogen storage in solids; applications of magnetic resonance; MR in medical imaging; hyperpolarized gases.
- **Dickhoff**, Willem H., Ph.D., Free Univ. of Amsterdam, 1981. Theoretical physics; many-particle theory, nuclear physics.
Miller, James G., Ph.D., Washington (St. Louis), 1969. Albert Gordon Hill Professor. Ultrasonics; biomedical physics; elastic properties of inhomogeneous media.

Ogilvie, Michael C., Ph.D., Brown, 1980. Quantum field theory and particle physics; theoretical physics; computational physics.

Schilling, James S., Ph.D., Wisconsin, Madison, 1969. Experimental solid state physics; high-pressure physics; magnetism and superconductivity.

Suen, Wai-Mo, Ph.D., Caltech, 1985. General relativity; cosmology; theoretical astrophysics.

Joint Professors

Research Professors

Amari, Sachiko, Ph.D., Kobe University, Kobe, Japan, 1986. Presolar grains, meteorites, noble gas and secondary ion mass spectrometry.

Meshik, Alex P., Ph.D., Vernadsky Institute, Moscow, 1988. Space physics; rare-gas mass spectrometry.

Zinner, Ernst, Ph.D., Washington (St. Louis), 1972. Astrophysics; experimental space science; extraterrestrial materials.

Associate Professors

Research Associate Professors

Floss, Christine, Ph.D., Washington (St. Louis), 1991. Space Physics; cosmochemistry

Holland, Mark R., Ph.D., Washington (St. Louis), 1989. Ultrasonics; biomedical physics; biomedical ultrasound.

Leopold, Daniel J., Ph.D., Washington (St. Louis), 1983. Semiconductor physics; electro-optics; materials science; magnetic resonance.

Assistant Professors

Ferrer, Francesc, Ph.D., Universitat Autónoma de Barcelona, 2001. Particle cosmology; Composition and evolution of the universe; the nature of dark matter and dark energy; ultra high-energy cosmic rays.

Wang, Yan Mei, Ph.D., California, Berkeley, 2002. Experimental biophysics, single-molecule imaging

Yang, Li, Ph.D., Georgia Institute of Technology, 2006. Condensed matter and materials theory.

Senior Lecturer

Emeritus Faculty

Friedlander, Michael W., Ph.D., Bristol, 1955. Cosmic rays; astrophysics; archaeoastronomy.

Adjunct Professors

Ristig, Manfred L., Ph.D., Cologne, 1966. Many-body theory; condensed matter theory.

Adjunct Associate Professors

Fraundorf, Philip B., Ph.D., Washington (St. Louis), 1980. Space physics; solid state physics; statistical physics.

Adjunct Assistant Professors

Leopold, Mary M., Ph.D., Washington (St. Louis), 1985. Optical response theory; electro-optics; mathematical physics.

Woods, Jason C., Ph.D., Washington University (St. Louis), 2002. Biophysics; applied physics; hyperpolarized-gas MRI.

RESEARCH SPECIALTIES AND STAFF

Theoretical

Astrophysics. Ultradense matter, neutron stars and quark stars; superfluidity and color superconductivity in compact stars; high-energy astrophysics and astroparticle physics. Alford, Clark, Cowsik, Dickhoff, Ferer, Katz, Khodel.

Condensed Matter Physics. Quantum fluids; strongly correlated electron systems; metal-insulator transitions; non-Fermi liquids; quantum critically; superconductivity; spin systems; quantum Hall effect; one-dimensional systems; soft condensed matter; magnetism; topological order; transition metal oxides; amorphous and complex ordered structures; glass transition; electronic structure; orbital order; statistical mechanics; mesoscopic physics; optimization and network problems; cold atom physics, excitonic effects. Clark, Dickhoff, Khodel, Nussinov, Seidel, Yang.

Elementary Particles and Fields. Perturbation theory; quantum chromodynamics; Non-Abelian gauge theories and confinement; quark matter; lattice gauge theory; color superconductivity; PT-symmetric theories; semiclassical approximations. Alford, Bender, Bernard, Ferrer, Ogilvie.

Nuclear Physics. Many-body theory of nuclear matter and finite nuclei. Clark, Dickhoff, Khodel.

Relativity. Gravitational radiation, black holes, tests of general relativity; numerical relativity; galactic dynamics, dark matter, cosmology. Cowsik, Ferrer, Suen, Will.

Other Computational Physics. Parallel computation; simulation; numerical analysis, first-principles calculations. Alford, Bender, Bernard, Carlsson, Clark, Dickhoff, Kelton, Miller, Nussinov, Ogilvie, Suen, Yang.

Experimental

Acoustics. Elastic and viscoelastic properties of media including hard and soft tissue; ultrasonic imaging and quantitative ultrasonic imaging and quantitative ultrasonic investigation of the cardiovascular system; characterization of bone and osteoporosis. Kovacs, Holland, Miller, Wickline.

Applied Physics. Quantitative analysis of composite materials; magnetic resonance imaging of materials; ultrasonic transducers. Conradi, Holland, Leopold, Miller.

Astrophysics/Extraterrestrial Materials. Solid state, ion microprobe, noble gas mass spectrometric and electron microscopic investigations of ancient stardust in meteorites and interplanetary dust; nucleosynthesis, stellar evolution, origin and evolution of the solar system including planetary atmospheres and organic molecules, early chronology from studies of (now) extinct isotopes. Amari, Bernatowicz, Foss, Hohenberg, Meshik, Zimmer.

Biophysics. Elastic properties of tissue; cardiac mechanics; mechanisms of ultrasonic propagation in tissue; cardiac Doppler ultrasound; wave-guide properties of retinal cells; mechanics of biomembranes; brain imaging; pulmonary physiology; biophysics of neural computation; physics of single neurons; single-molecule imaging. Holland, Kovacs, Miller, Wang, Wessel, Wickline, Woods.

Dark Matter. Laboratory and astronomical searches for dark matter. Buckley, Cowsik.

High-Energy Astrophysics. Cosmic-ray elemental and isotopic composition and energy spectra, gamma-ray and x-ray astrophysics of galactic and extragalactic sources, observations from spacecraft and high-altitude balloons; astrophysics of the highest-energy galactic and extragalactic gamma-ray sources; observations with ground-based atmospheric Chernikov detectors; correlated optical observations of high-energy astronomical transients; observations of very high energy neutrinos from high-altitude balloons over Antarctica. Binns, Buckley, Israel, Krawczynski.

Low-Temperature Physics. Phase transitions; absorbed films; ortho-para conversion in hydrogen; hydrogen on surfaces; pressure-induced superconductivity. Schilling.

Condensed Matter/Materials Physics. Hydrogen in metals and ionic and complex solids; nucleation and phase transitions in liquid and solids; synchrotron x-ray diffraction and thermo-physical property measurements of equilibrium and non-equilibrium liquids; x-ray and electron microscopy studies of quasi crystalline phases; superconductivity and magnetism under extreme pressures; high-Tc superconductivity; pressure-induced insulator-to-metal transitions; elastic and viscoelastic properties of composites; nanocrystalline materials; thin film growth and characterization; wide and narrow-gap semiconductors; extraordinary magnetoresistance; physisorbed (two-dimensional) matter; nuclear magnetic resonance; photoluminescence and photoconductivity in conducting polymers; electron microscopy and inelastic electron scattering in solids; plasmons in simple metals and composites; magnetic properties of Kondo lattices and weak itinerant ferromagnets, tensile stress-dependent transport properties of narrow-gap semiconductors; 2D physics and magnetic frustration in layered double hydroxides. Conradi, Gibbons, Kelton, Leopold, Miller, Schilling, Solin.

Medical and Health Physics. Quantitative ultrasounds and ultrasonic imaging; quantitative cardiovascular physiology echocardiography; nuclear magnetic resonance imaging (MRI) and positron emission tomography (PET); MRI of lungs with hyperpolarized gas. Conradi, Conturo, Culver, Holland, Kovacs, Miller, Wickline, Woods, Yablonskiy.

Nuclear Physics. Heavy-ion reaction studies from near barrier to relativistic energies; reaction dynamics studied with particle-particle interferometry and atomic x-ray clocks; fragmentation cross sections of cosmic-ray nuclei on various targets; double beta decay; natural nuclear reactors. Binns, Israel, Krawczynski, Meshik, Sobotka.

Relativity and Gravitation. Tests of the equivalence principle; study of forces in the submillimeter domain, including Casimir forces, axion exchange, and violations of the inverse square law of gravitation. Cowsik.