Anharmonic oscillators and conformal field theories

Roberto Tateo
(With: P. Dorey, C. Dunning and F. Gliozzi)

Department of Theoretical Physics
Torino University, Italy

St. Louis, March 2009
Outline

1. 2D quantum conformal field theory and the minimal models
2. The Kac table
3. The ODE/IM correspondence for the minimal models
3. Monodromy properties and the Kac table
3. Conclusions
2D quantum conformal field theories play a central role in:
- critical phenomena in 2D condensed matter physics,
- String theory.

The ferromagnetic Ising model Hamiltonian is

$$H[\sigma] = - \sum_{<ij>} \sigma_i \sigma_j, \quad \sigma_i = \pm 1$$

the sum is over nearest neighbor sites. The model exhibits:
- for $T > T_c$: a disordered phase with $<\sigma> = 0$,
- for $T < T_c$: an ordered phase with $<\sigma> \neq 0$,
- at $T = T_c$ a second order phase transition. At $T = T_c$ there are fluctuations at all length scales and the continuum limit version of the model is conformal invariant.
2D conformal transformations coincide with the analytic transformation

\[ z \rightarrow f(z) \ , \ \bar{z} \rightarrow \bar{f}(\bar{z}) \]

with \( z = x + iy \), \( \bar{z} = x - iy \).

The corresponding infinitesimal generators are

\[ l_n = -z^{n+1} \partial_z \ , \ \bar{l}_n = -\bar{z}^{n+1} \partial_{\bar{z}} \ , \]

They satisfy

\[ [l_m, l_n] = (m - n)l_{m+n} \ , \ [\bar{l}_m, \bar{l}_n] = (m - n)\bar{l}_{m+n} \ , \ [l_n, \bar{l}_m] = 0 \ . \]

At quantum level \( l_m \rightarrow L_m \), \( \bar{l}_m \rightarrow \bar{L}_m \), \( [L_n, \bar{L}_m] = 0 \) and

\[ [L_m, L_n] = (m - n)L_{m+n} + \frac{c}{12} (n^3 - n)\delta_{n+m,0} \]

\( c \) : central charge/conformal anomaly/Casimir coefficient.
Primary operators: special operators that transform in a simple way: \( \phi(z, \bar{z}) \rightarrow (\partial_z f)^h (\partial_{\bar{z}} \bar{f})^{\bar{h}} \phi(f, \bar{f}) \).

All the operators can be obtained from the primary operators by acting with \( \{ L_{-n}, \bar{L}_{-n} \} \).

For generic \( c \) there is an \( \infty \) number of primary operators.

Given two co-prime integers \( p < q \) the Minimal Models \( \mathcal{M}_{p,q} \) are CFTs with

\[
c = 1 - 6 \frac{(p - q)^2}{pq} < 1
\]

and only a finite number of primary operators. They have conformal dimensions

\[
h_{s,r} = \frac{(pr - qs)^2 - (p - q)^2}{4pq}, \quad (1 \leq s < p, 1 \leq r < qs/p)
\]
The set of $h_{r,s}$ form the so-called Kac table.

- $\mathcal{M}_{3,4} \equiv$ Ising model:
  
  $$c = 1/2 \ , \ \mathbb{1} \leftrightarrow h_{1,1} = 0 \ , \ \epsilon \leftrightarrow h_{1,3} = 1/2 \ , \ \sigma \leftrightarrow h_{1,2} = 1/16$$

- $\mathcal{M}_{2,5} \equiv$ Yang-Lee model:

  $$c = -22/5 \ , \ \mathbb{1} \leftrightarrow h_{1,1} = 0 \ , \ \phi \leftrightarrow h_{1,2} = -1/5 .$$
The ODE/IM correspondence for the minimal models

The Schrödinger equation

$$\left(-\frac{d^2}{dx^2} + (x^2M - E) + \frac{l(l+1)}{x^2}\right) \psi(x) = 0,$$

with \(\psi(0) = \psi(\infty) = 0\), \(M > 0\) and \(l\) real, is related to CFT.

- The associated Stokes relations imply constraints on its eigenvalues \(E \in \{E_i\}\) which coincide with the Bethe Ansatz Equations for the 6-vertex model in its conformal (\(c = 1\)) limit.
- The same BAEs emerge from the study of \(c \leq 1\) CFTs in the framework developed by Bazhanov, Lukyanov and Zamolodchikov.

The Schrödinger equation is related to a CFT and a primary operator with

\[c = 1 - \frac{6M^2}{M+1}, \quad h = \frac{(2l + 1)^2 - 4M^2}{16(M+1)}\].
For any two coprime integers $p < q$, the ground state of the minimal model $\mathcal{M}_{p,q}$ is found by setting

$$M + 1 = \frac{q}{p}, \quad l + \frac{1}{2} = \frac{1}{p}$$

in the Schrödinger equation. This corresponds to the central charge

$$c_{pq} = 1 - \frac{6}{pq}(q-p)^2$$

and lowest-possible conformal dimension

$$h = \frac{4}{pq}(1 - (q-p)^2)$$

- **Ising**: $\mathcal{M}_{3,4}$, $h = 0 \leftrightarrow 1$
- **Yang-Lee**: $\mathcal{M}_{2,5}$, $h = -1/5 \leftrightarrow \phi$
The \((l(l+1))/x^2\) term can be eliminated by the simple transformation

\[ x = z^{p/2}, \quad \psi(x, E) = z^{p/4-1/2}y(z, E), \]

and the rescaling \( z \rightarrow (2/p)^{2/q}z : \)

\[ \left( -\frac{d^2}{dz^2} + z^{p-2}(z^{q-p} - \tilde{E}) \right) y(z, \tilde{E}) = 0 \]

where

\[ \tilde{E} = \left( \frac{p}{2} \right)^{2-2p/q}E. \]

- The change of variable has replaced a singular potential defined on a multi-sheeted Riemann surface, by a simple polynomial.
- Any solution to the transformed equation is automatically single-valued around \( z = 0 \).
To see which other primary states have similarly-trivial monodromy, perform the same transformation with $l > -1/2$:

$$\left(-\frac{d^2}{dz^2} + \frac{\tilde{l}(\tilde{l}+1)}{z^2} + z^{p-2}(z^{q-p} - \tilde{E})\right)y(z, \tilde{E}, \tilde{l}) = 0$$

where

$$2(\tilde{l} + \frac{1}{2}) = p(l + \frac{1}{2}).$$

The Fuchsian singularity at $z = 0$ means that the equation admits a pair of solutions

$$\chi_1(z) = z^{\lambda_1} \sum_{n=0}^{\infty} c_n z^n ; \quad \chi_2(z) = z^{\lambda_2} \sum_{n=0}^{\infty} d_n z^n ,$$

where $\lambda_1 = \tilde{l} + 1 > \lambda_2 = -\tilde{l}$ are the two roots of the indicial equation $\lambda(\lambda - 1) - \tilde{l}(\tilde{l} + 1) = 0$ and

$$\chi_j(e^{2\pi i} z) = e^{2\pi i \lambda_j} \chi_j(z) , \quad j = 1, 2.$$
A general solution is

\[ y(z, \tilde{E}, \tilde{l}) = \sigma \chi_1(z) + \tau \chi_2(z) \]

and we shall demand that the monodromy of \( y(z) \) around \( z = 0 \) is projectively trivial:

\[ y(e^{2\pi i} z) \propto y(z). \]

This condition imposes

i) \( 2\tilde{l} + 1 \) is a positive integer;

ii) The allowed values of \( 2\tilde{l} + 1 \) form the set of holes of the infinite sequence

\[ pr + qs \quad , \quad r, s = 0, 1, 2, 3 \ldots \quad (*) . \]

We shall call the set of integers \( (*) \) ‘representable’ and denote them by \( \mathbb{R}_{pq} \).

As a consequence

\[ h = \frac{(2\tilde{l} + 1)^2 - (p - q)^2}{4pq} \]

reproduces the set of conformal weights of the primary operators in the Kac table of \( \mathcal{M}_{p,q} \).
Ising model \( \{3r + 4s\} \): 

\[
\begin{array}{ccccccc}
0 & \frac{1}{16} & & & & & \\
\bullet & \circ & \circ & \bullet & \bullet & \circ & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

(The holes in the infinite sequence of integers for the critical Ising model \( \mathcal{M}_{3,4} \).
The holes are at 1, 2 and 5.)

Yang-Lee model \( \{2r + 5s\} \): 

\[
\begin{array}{ccccccc}
\frac{-1}{5} & 0 & & & & & \\
\bullet & \circ & \bullet & \circ & \bullet \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

(Holes for the Lee-Yang model \( \mathcal{M}_{2,5} \), at 1 and 3.)
To establish these claims:

- The general solution $y(z)$ be projectively trivial means that $\chi_1(z)$ and $\chi_2(z)$ must have the same monodromy, which implies that:

  $$\lambda_1 - \lambda_2 = 2\tilde{l} + 1 \in \mathbb{N}.$$ 

- This in turn restricts $\tilde{l}$ to be an integer or half integer, so that, naively, the allowed solutions are even or odd under a $2\pi i$ rotation around $z = 0$.

- In such a circumstance, while $\chi_1(z)$ keeps its power series expansion, $\chi_2(z)$ generally acquires a log contribution:

  $$\chi_2(z) = D\chi_1(z) \log(z) + \frac{1}{z\tilde{l}} \sum_{n=0}^{\infty} d_n z^n.$$ 

- Unless $D = 0$, this will spoil the projectively trivial monodromy of $y(z)$. 

The log term is absent iff the recursion relation for the $d_n$'s with $D = 0$

$$n(n - 2\tilde{l} - 1) d_n = d_{n-q} - \tilde{E} d_{n-p}$$

with the initial conditions $d_0 = 1$, $d_{m<0} = 0$ admits a solution. Consider first the case $2\tilde{l} + 1 \notin \mathbb{R}_{pq}$. Starting from the given initial conditions, the recursion relation generates a solution of the form

$$\chi_2(z) = \frac{1}{z^{\tilde{l}}} \sum_{n=0}^{\infty} d_n z^n$$

where the only nonzero $d_n$'s are those for which the label $n$ lies in the set $\mathbb{R}_{pq}$. Given that $2\tilde{l} + 1 \notin \mathbb{R}_{pq}$, for these values of $n$ the factor $n(n - 2\tilde{l} - 1)$ on the LHS of the recursion relation is never zero, and the procedure is well-defined.
If instead $2\tilde{l} + 1 \in \mathbb{R}_{pq}$, then the recursion equation taken at $n = 2\tilde{l} + 1$ yields the additional condition

$$\tilde{E} \, d_{2\tilde{l}+1-p} - d_{2\tilde{l}+1-q} = 0,$$

which is inconsistent for generic $\tilde{E}$, and so the log term is required.

Given the characterisation of $\mathbb{R}_{pq}$, the set $\mathbb{Z}^+$ of non-negative integers can be written as a disjoint union

$$\mathbb{Z}^+ = \mathbb{R}_{pq} \cup \mathbb{N}_{pq}$$

where $\mathbb{N}_{pq}$ is the set of ‘nonrepresentable’ integers. If the coprime integers $p$ and $q$ are larger than 1 then $\mathbb{N}_{pq}$ is non-empty; in fact

$$|\mathbb{N}_{pq}| = \frac{1}{2}(p-1)(q-1),$$

a result which goes back to Sylvester.
Conclusions

- Carl is the best!!